GCE BIOLOGY BY5

SUMMER 2013

| Question | | Marking details | $\begin{array}{c}\text { Marks } \\ \text { Available }\end{array}$ |
| :---: | :---: | :--- | :--- | :---: |
| (a) | | $\begin{array}{l}\text { Seminiferous tubule - (meiosis) sperm production/ } \\ \text { spermatogenesis; Accept spermatids } \\ \text { Seminal vesicles - produce nutrient (solution) for sperms; } \\ \text { Accept aids sperm motility/ mobility } \\ \text { Reject Neutralise acidic urine }\end{array}$ | 2 |
| (b) | $\begin{array}{l}\text { Ligase - \{splices / joins\} two \{sections of DNA/ groups of } \\ \text { nucleotides/ sugar phosphates\} together; } \\ \text { Accept joins (donor) DNA into a \{plasmid/ vector\} } \\ \text { Reject joins strands of DNA } \\ \text { Polymerase - joins single nucleotides to end of a DNA chain; } \\ \text { Accept addition of \{free/single\} nucleotides to \{exposed (DNA) } \\ \text { bases/template\}; } \\ \text { Gene - \{section of DNA / chromosome\} which codes for a } \\ \text { \{single polypeptide / protein/ sequence of amino acids\}; } \\ \text { Allele - \{different/ specific\} \{forms/ versions\} of \{a/same\} gene; } \\ \text { Accept different types of the same gene }\end{array}$ | 2 | |$\}$

Question			Marking details	Marks Available
2.	(a)	(i) (ii)	A. Variation in age at which sexual maturity is reached; B. Caused by mutation; C. Reach sexual maturity earlier/ Small fish \{have a selective advantage/ pass through net\}/ ora; D. Breed/ reproduce; reject mate E. Pass on alleles to offspring; reject genes F. Allele frequency for earlier maturity / hence small size at maturity increases; G. Figs quoted from graph (in context); Very few large cod survived/ ORA; reject none reduced gene pool; $\{\mathrm{No} /$ little $\}$ mutation (to increase size) / insufficient time for genetic drift (to increase size) / No gene flow from another gene pool; Small fish produce less gametes/ difficulty in breeding/ few fish remain to reproduce/ reproductive isolation; Not enough food/ increased competition for food/ increased predation/ disease; Change in \{temperature/ pH\}/ pollution; Restricted fishing times/ hours; Quotas/ licenses; Exclusion zones/ OWTTE; Limiting numbers of fishing vessels/ international agreements limiting catches; Limiting season; Restriction of area of nets; Closing spawning and/ or nursery areas; REJECT any reference to mesh size	Max 5 Max 3

Question		Marking details	Marks Available
(c)	(i)	Eutrophication/ pollution; \{Disease/ parasites\} more likely (to spread) in \{cultivated fish/ overcrowded conditions\}/ disease may spread to wild fish; \{Antibiotics/ pesticides\} qualified e.g. can harm other marine organisms/ bioaccumulation of pesticides/ enters food chain/ high cost; Problems associated with flow of alleles into wild population; Higher level of dioxins/ PCBs in farmed fish;	Max 4
(ii)	Three of each type of chromosome / \{odd/uneven\} number of chromosomes/ unpaired chromosomes; No pairing of homologous chromosomes/ no bivalent formed; Prophase 1 meiosis; Meiosis does not take place; No gametes produced; Question 2 total	[16]	

Question		Marking details	Marks Available
(c)	Incomplete linkage; Genes \{further/ far\} apart on same chromosome; \{Crossing over/ chiasmata\} can occur; Four types of gametes produced(but not in equal numbers); Small numbers of recombinants / large numbers parental types; Recombinants equal in numbers / parental equal in numbers; Question 3 Total	[12]	

Question			Marking details	Marks Available
4.	(a)	(i)	A = Primary oocyte/Primary follicle; B = Graafian follicle; Accept secondary follicle/ theca $\mathrm{C}=$ Corpus luteum; reject yellow body	3
		(ii)	Ovulation;	1
		(iii)	HCG/ human chorionic gonadotrop(h)in;	1
	(b)	(i)	W = Oogonium/ oogonia; $X=$ primary oocyte; $\mathrm{Y}=$ Secondary oocyte; $Z=($ first $)$ Polar body; reject nucleus accept polar cell	4
		(ii)	Mitosis;	1
		(iii)	Correct number of chromosomes in each; $\mathrm{X}=4 \mathrm{Y}=2$ Cell X Prophase 1 drawn correctly; chromosomes inside nuclear membrane, not on equator Cell Y Metaphase 2 drawn correctly; must be clearly on equator	3
	(c)		Polar bodies produced/ reduction in genetic material at each stage of meiosis; ecf from bi - accept polar nucleus if used in bi Functional gamete retains (most of) the cytoplasm; (Cytoplasm) acts as a food store for zygote/ provide mitochondria for zygote; needed until implantation takes place/ obtained from placenta;	2
			Question 4 Total	[15]

Question			Marking details	Marks Available
5.	(a)	(i)	repeat experiments; Same area of grassland used for each test/ Same grass covering/ sludge injected to same depth/ Same \{volume / mass/ concentration\} of sludge/ same sludge applied/ Same soil \{type/ gradient/ aspect/ exposure\}/ same soil nitrate concentration/ same time of year; NOT temperature/ pH	2
		(ii)	increase in rainfall increases \{leaching/ nitrate concentration in soil water\}; greater effect on injected sludge with increased rainfall/ ORA; only a small effect at low rainfall;	2 max
		(iii)	apply (to surface) when \{dry / little rainfall/ rainfall is less than [any figure less than 120]\};	1
	(b)		Algal growth/ algal bloom/ overgrowth of plant; Less light, so \{algae/ plants\} die; \{Bacteria/ saprobionts/ saprotrophs/ fungi\} decompose \{plants/ organic material\} (and increase in number); (Reject decomposers) Using up oxygen in respiration;	3 max
	(c)		Leguminous plants/ any named leguminous plant; Rhizobium/ nitrogen fixing bacteria (in root nodules); Reject nitrate fixing Azotobacter Convert nitrogen (gas) into ammonium/ ammonia/ amino acids; Plants \{left to decay/ ploughed in\};	3

Question			Marking details	Marks Available
6.	(a)		Rate of Conversion of light energy into chemical energy (by producers /by photosynthesis); Accept rate at which \{products/ organic materials\} are formed/ produced	1
	(b)		(net primary production) decreases; More \{carbohydrate/ glucose\} is \{broken down/ used by\} respiration (than is produced by photosynthesis);	2
	(c)	(i)	(heat lost in) respiration; Excretion; egestion/not all parts of the material are digestible; not all parts eaten;	Max 2
		(ii)	Herbivores: \{difficult to digest/ less efficient at digesting\} cellulose/ have more \{indigestible/ fibrous\} material (in diet)/ ; Reject cannot digest cellulose Carnivores:\{easily digest/ more efficient at digesting \} \{protein/ fat\}; More \{egested material/ faeces\} (lost) by herbivores/ less \{egested material/ faeces\} lost by carnivores;	Max 2
	(d)		Productivity of producers higher/ primary productivity higher; Secondary productivity higher/ more energy stored in consumers; \{Less energy \{used/wasted\} /respiratory rate is lower\} + qualification eg.in cold blooded animals/ buoyancy; Higher \{temperature/ light\} higher rate of photosynthesis;	Max 1
			Question 6 Total	[8]

Question		Marking details	Marks Available
(b)	A. Asexually produced and genetically identical; B. Artificial, cuttings; C. micropropagation; D. meristem removed; E. meristem is \{able to differentiate/ give rise to different cell types/ totipotent\}		
F. cut into small pieces/ explants; G. Culture under sterile conditions; H. On a nutrient \{medium/ agar jelly\}; I. (Cells divide to form a) Callus; J. Callus divided and \{allowed to differentiate into a plantlet/ treated with plant growth substances to promote root and/or shoot growth\};			
MaxAdvantages, K. speed of production; L. Production of large numbers; M. \{Identical/ desired\} line/ crop uniform/ disease free; Disadvantages N. Must maintain sterile conditons to avoid introduction of pathogens; O. Genetic instability/ increased mutation rate; P. loss of genetic variation/ reduction gene pool/ all susceptible to same diseases; Candidates must attempt an advantage and a disadvantage in order to be awarded full marks.			
[10]			

